
Archived Material

Historical Purposes Only

The 1997 Petaflops Algorithms Workshop Summary Report

May 9, 1997

Introduction This workshop was held in Williamsburg, Virginia during the week April 13-18, 1997. It was

organized to address the algorithmic research questions presented by the exciting potential

of future computer systems that perform at a sustained rate of one petaflops (also written

one Pflop/s, i.e. 1015floating-point operations per second). This rate is between 1,000 and

10,000 times faster than the most powerful systems available today. The current

consensus of scientists who have performed initial studies in this field is that petaflops

systems may be feasible by the year 2010, assuming that key technologies continue to

progress at current rates. Such a computing capability will permit the solution of large

problems projected to be required for various federal mission applications in the 2010 time

frame. In addition, if past history is any indication, the availability of these new systems will

enable some completely new applications that can only be dimly envisioned at the present

time.

 It should be emphasized that we could also use the term "peta-ops", since these systems

will be required to perform intensive integer and logical computation in addition to floating-

point operations. It should also be emphasized that achieving one Pflop/s is not a goal

being sought for its own sake, but as emblematic of the general need to greatly accelerate

the solution (i.e. to reduce the run time) of future science and engineering problems.

 Indeed, "petaflops computing" has come to mean more than merely the future goal of one

Pflop/s computing rate. It has come to refer to a growing body of research dealing with the

issues of very highly parallel computing. This derives from the consensus of scientists in

the field (see the various federally sponsored "point design" studies) that petaflops

computers will have between 10,000 and 1,000,000 processors, along with deep multi-level

memory hierarchies. In fact, it is clear from the technology trends behind these predictions

that future computing technology in general will be characterized by highly parallel,

hierarchical designs. Thus research on petaflops systems will pave the way for the solution

of similar issues that are bound to arise in mainstream scientific and even non-scientific

computing.

 The design and implementation of efficient algorithms for such systems present

unprecedented challenges to computational scientists and engineers. It is also clear that

these challenges need to be addressed now, so that the underlying principles will be well

understood, and sample implementations in hand, when prototype petaflops systems are

available. In addition, algorithm research performed in the next few years will provide

invaluable feedback to the hardware technologists, system architects and system software

scientists involved in the design of these systems. Further, it is hoped that research in

algorithms for petaflops systems will result, in at least some cases, in schemes that are

fundamentally faster on a wide class of scientific computer systems, not just on future

petaflops systems.

Principal Findings

and

Recommendations

The overall conclusion of the workshop participants is that petaflops computing is feasible,

in the particular sense that at least some of the key algorithms now used on high

performance computing systems do appear to be scalable to petaflops systems. Other

algorithms are potentially scalable, but significant research challenges need to be

overcome. Some classes of algorithms appear unsuitable for petaflops architecture.

However, further research may lead to alternate algorithms to solve the same problems that

are more suitable to petaflops systems. Moreover, if history is any guide, algorithm

research addressing the challenges of petaflops computing is likely to yield, in at least

some cases, fundamentally superior algorithms, which produce faster solutions on a wide

range of computer systems. For example, a recent federal agency report found that

algorithm improvements were responsible for between three and four orders of magnitude

performance improvement for certain applications during the years 1970-1990 [Grand

Challenges: High Performance Computing and Communications, Supplement to the

President's 1992 Budget, pg. 15].

 The principal findings and recommendations of the workshop participants are as

follows:

Concurrency 1. Concurrency - There is concern that some of the algorithms used on today's highly

parallel systems may not possess the enormous levels of concurrency (on the order of 108)

required for the proposed petaflops designs. This conclusion holds for both the hybrid

technology multi-threaded (HTMT) and the various commodity off-the-shelf (COTS)

technology designs. The concurrency requirement for a particular design and algorithm

might be reduced if one can assume high cache hit rates, but it will still exceed one million

in most cases. The concurrency challenge is exacerbated by the pursuit of memory-thin

designs, relative to the ratio of main memory to processing power that prevails in systems

today. We believe that many algorithms will possess the required levels of concurrency, but

since few analyses of this sort have been published, it is hard to know for sure. Scaling

studies are thus needed to better understand this issue.

Data locality 2. Data locality - Although programmers of highly parallel systems have developed

considerable expertise in finding and exploiting data locality in various algorithms, few

studies have been published with quantitative measures of data locality. There is not even

a good metric of data locality in the current literature. As a result, it is difficult to determine

whether various algorithms will run efficiently in the deep memory hierarchies proposed in

the petaflops designs. Thus research is needed in developing effective methodologies for

assessing and exploiting data locality.

Latency and

bandwidth

3. Latency and bandwidth - The latencies that can be tolerated by algorithms at various

levels of granularity are not well understood, and so analyses are needed to better

understand the extent to which the relatively high latencies proposed in the petaflops

designs will limit achievable performance. A related issue is synchronization. The potential

impact of relatively high synchronization times on algorithm performance needs further

study.

 Along this line, it was noted that one potential means to hide latency is to employ

algorithms, such as transpose-based methods, that exploit high-level parallelism. These

schemes generally require high system bandwidth. Other algorithms can hide latency by

utilizing low-level parallelism. These schemes generally require hardware features such as

prefetch queues and multithreading. Thus there are intriguing opportunities here for

innovative algorithms, but the hardware capabilities must be planned and sufficiently

understood to push the algorithm development and evaluation.

Numerical accuracy 4. Numerical accuracy - The accuracy and stability of numerical methods as problems are

scaled to petaflops sizes are not well understood, and there is concern that some

algorithms may suffer significant losses of numerical precision. For some algorithms,

computational scientists may need to choose between faster but less stable schemes and

slower but more accurate schemes. In any event, the scaling numerical behavior of various

algorithms is worthy of more careful study.

 Along this line, it appears that 64-bit floating-point arithmetic will be inadequate for some

applications by the 2010 time frame. Thus petaflops systems will need to provide some

hardware support for 128-bit floating-point arithmetic (this conclusion was also reached in

at least one previous petaflops workshop). In addition, some classified applications would

benefit from 128-bit integer arithmetic. There are some applications for which even 128-bit

arithmetic is not sufficient. However, these applications typically utilize multiple precision

arithmetic software, such as the facility provided in Mathematica. Since such applications

are still relatively rare, and since for the time being they can utilize multi-precision software

designed to run on standard IEEE hardware, it appears premature at this time to consider

hardware support for these extreme levels of precision.

New algorithmic

approaches

5. New algorithmic approaches - There is reason to believe that new algorithms and

related techniques may exist that are fundamentally more appropriate for petaflops

computing than existing algorithms. In particular, there may exist algorithms that are

superior in at least one of the above four categories: concurrency, data locality, latency

tolerance and numerical stability. Some possibilities along this line were mentioned during

this workshop. However, additional research is required to assess these alternate

approaches. The intent here is not to duplicate general algorithm research already being

conducted in the computational science field, but rather to focus on issues specific to future

petaflops-class systems.

Unstructured grid

methods

6. Unstructured grid methods - Unstructured grid methods were identified as a

particularly strategic area of algorithm research and development, since these methods are

likely to be utilized in a wide variety of future high-end applications. However, the

fundamental scalability of these schemes, particularly for those that involve dynamic mesh

refinement and dynamic load balancing, is not well understood. More research thus is

needed into refining these methods and analyzing their scalability to petaflops-scale

systems.

Cache Coherence 7. Cache Coherence - Currently some systems provide global cache coherence, while

others do not. Some in the workshop who have hardware expertise noted that global cache

coherency will be very hard to achieve in a petaflop system. Thus research is needed on

algorithms that do not require global cache coherence.

Fault tolerance 8. Fault tolerance - Systems of this scale and novelty are likely to exhibit significantly

higher rates of software and hardware failure. Thus special hardware and software facilities

are needed to insure reliable computation (this conclusion was also reached in previous

workshops). One idea mentioned in this workshop is to design algorithms and

implementations that permit easy recovery from system failures. The extent to which this

can be done is worthy of some study. Any analyses in this area should be coordinated with

the ongoing studies of hardware mechanisms to detect and mitigate errors.

Detailed

performance

analyses

9. Detailed performance analyses - Much may be learned about the potential scalability

of various algorithms, with regard to the issues mentioned above, using relatively simple

analyses (see the algorithm case studies, to be published). However, elementary analyses

of this sort cannot possibly determine with certainty that an algorithm will scale successfully

to petaflops levels. To gain greater confidence, more detailed studies, including quantitative

analyses of memory hierarchy operation, are required. These analyses will likely involve

system simulations, both at the node level and at the network level. The most accurate

simulations will themselves require highly parallel computer systems to run in reasonable

time.

 Along this line, the workshop participants identified a critical need for improved

performance monitoring facilities, hardware and software, in future systems (this conclusion

was also reached at previous petaflops workshops). For example, at present we do not

even have adequate performance tools for analyzing single processor systems. Accurate

timers and operation counters, for instance, are not available on many systems. Compiler

feedback on performance issues is scarce, as are tools to permit the programmer to better

understand cache behavior. Analyzing the performance of a program running on a system

with seven levels of memory hierarchy, and with 100,000+ nodes, will be an impossibility

unless very powerful capabilities are provided.

Algorithm

improvement

metrics

10. Algorithm improvement metrics - It was noted during the workshop that there are no

rigorous metrics (except for raw operation count) to measure advances in algorithms apart

from improvements in computer technology. In other words, there is no accepted

methodology to assess algorithm improvements, such as hierarchical designs, that result in

faster run times on a wide variety of modern systems. It is increasingly recognized that out-

of-cache loads and stores, more than multiplies and square roots, are the instructions on

the critical path of program execution. An effective and meaningful methodology for

measuring algorithmic improvements that go beyond the flop count and reward cache

locality would be quite useful in the field.

An expanded

algorithm

research

community

11. An expanded algorithm research community - The challenge of designing

algorithms for future very highly parallel computers suggests the need to involve other

segments of the research community, such as the mathematical research community, in

this effort. Possible areas of investigation along this line include: (1) Monte Carlo

approaches to combinatorial problems; (2) conflict graphs to predict data motion and

compensate for latency (3) probability and queueing theory techniques to analyze

networks; and (4) perfect hash functions to save on data communication requirements; and

(5) formal methods to certify the correctness of petaflops algorithms and hardware logic

designs. It may be appropriate to form special multi-disciplinary teams devoted to

algorithms for future systems.

New languages

and

constructs

12. New languages and constructs - Given the difficulty in developing high-performance

implementations of advanced algorithms on today's highly parallel systems, the possibility

of developing a new language formalism for highly parallel computing, as an alternative to

HPF and MPI, should be considered. One possibility here is to examine more carefully

alternate languages that are already being used in some quarters of the high performance

computing community. In any event, new language constructs need to be provided to

existing languages (this conclusion was also reached at previous workshops). The most

important of these is improved facilities to specify and control (to a limited degree) the

placement and movement of data through the memory hierarchy (i.e. "spatial" and

"temporal" locality). Current languages, including HPF and MPI, are considered inadequate

in this regard. Improved facilities for expressing parallelism (task parallelism as well as data

parallelism) at various levels should also be pursued.

Numerical library

routines

13. Numerical library routines - Given the difficulty of implementing highly optimized

implementations of key algorithms on these systems, it is important to facilitate the greater

availability and increased usage of library routines. One possibility here is to explore

standard conventions for data layout, so that it is easier to develop routines that can be

widely used.

Preliminary

Assessments of

Algorithm

Scalability

The participants in the workshop made some preliminary assessments of algorithm

scalability, as given in the list below. This list is not intended to be a comprehensive list of

algorithms for petaflops applications. It is limited to those algorithm areas that workshop

participants felt sufficiently expert to assess.

 These algorithms are divided into three categories: (1) those which appear to be scalable to

petaflops systems, given appropriate effort; (2) those which appear scalable, provided

certain significant research challenges are overcome; and (3) those which appear to

possess major impediments to scalability, from our present perspective. These

assessments are only preliminary judgments, based in most cases on experiences with

current parallel implementations, as well as some cursory analysis of algorithm parameters.

It is hoped that these assessments can be sharpened in the coming months and years as

the issues of very highly parallel computing are further explored.

 These algorithms are divided into three categories: (1) those which appear to be scalable to

petaflops systems, given appropriate effort; (2) those which appear scalable, provided

certain significant research challenges are overcome; and (3) those which appear to

possess major impediments to scalability, from our present perspective. These

assessments are only preliminary judgments, based in most cases on experiences with

current parallel implementations, as well as some cursory analysis of algorithm parameters.

It is hoped that these assessments can be sharpened in the coming months and years as

the issues of very highly parallel computing are further explored.

 For the purposes of these assessments, a petaflops system problem is defined as a

problem that cannot be solved on smaller machines, or a conventional network of smaller

machines, due to

 Large memory requirements

 Large computational requirements

 Large internode communication requirements

 Small internode latency requirements

 In addition, the problem should run on a petaflops system in a reasonable time.

 Scalable with appropriate effort:

Dense linear algebra algorithms

 FFT algorithms (provided system has sufficient global bandwidth)

 Partial differential equation solvers for statically gridded problems, including explicit and
implicit schemes

 Sparse symmetric direct solvers, including positive definite and indefinite methods

 Sparse iterative solvers (provided the preconditioner is parallelizable)

 Tree code algorithms for n-body problems

 Monte Carlo algorithms for quantum chromodynamics calculations

 Radiation transport algorithms

 Certain highly concurrent classified algorithms

 Scalable provided significant research challenges are overcome:

Dynamic unstructured grid methods, including mesh generation, mesh adaptation and
load balancing

 Molecular dynamics algorithms

 Interior point-based linear programming methods

 Data mining algorithms, including associativity rules, clustering, and similarity search
schemes

 Sampling-based optimization and search techniques, including genetic algorithms

 Branch and bound search algorithms

 Boundary element algorithms

 Symbolic algorithms, including Grobner basis methods

 Discrete event simulation

 Certain classified algorithms that involve random memory accesses

 Possessing major impediments to scalability:

 Sparse unsymmetric Gaussian elimination

 Theorem proving algorithms

 Sparse simplex linear programming algorithms

 Integer relation and integer programming algorithms

A Success Metric More than one participant emphasized the fact that many, if not most, petaflops system

jobs are likely to consist of an aggregate of almost embarrassingly parallel, modest-sized

calculations, such as to explore the parameter space for aircraft design optimization. Even

today, such usage comprises a large fraction of total system cycles on many large scientific

systems. Indeed, such jobs are usually the production-oriented calculations that are the

basis for a center's funding. "Heroic" calculations that press the limits of available

technology are often done by researchers who lack such strong financial support. However,

most large scientific centers also recognize that these heroic jobs are needed to lead the

way into future high performance computing applications. In short, there is a well-

recognized symbiotic relationship between modest-sized production usage and heroic,

research usage.

 In spite of these considerations, the participants felt that if petaflops systems are only

effective on aggregates of modest-sized calculations, then their success (as well as the

success of a research program in petaflops algorithms) would be questionable. One reason

for this judgment is the observation that such applications may run on networks of RISC

symmetric multiprocessors of comparable technology generation.

 In other words, the consensus of the workshop participants is that a rigorous success

metric for petaflops computing R&D must involve at least some true petaflops system

problems (in the sense described above). Along this line, we suggest the following as a

possible metric of the success of a program in petaflops algorithms: if all of the algorithms

listed in the first category above, and at least one in the second category, have been

successfully implemented in applications running on petaflops system, with sustained

performance rates of at least 0.1 Pflop/s, then the research effort in petaflops algorithms

has been successful.

 It is hoped that the above findings and recommendations will form the structure of a

rigorous research agenda in the field.

